

EPI-OPTICS 11 Erice, Italy July 21, 2010

Accelerating the next technology revolution.

Optical spectroscopy of defects in nm-scale high-k dielectric and silicon-on-insulator (SOI) films

Mike Downer University of Texas at Austin

Nanometer-scale high-k dielectric and SOI films have enabled devices to continue operating with high-speed and low power consumption...

... but are susceptible to formation of defects

"Faster, non-destructive ways of detecting these defects are needed." ITRS 2009

Co-workers

Accelerating the next technology revolution.

Si/SiO₂/Hf_{1-x}Si_xO₂

Jimmy Price PhD 2009

<u>SOI</u>

Ming Lei

Sematech

Gennadi Bersuker

Pat Lysaght

Financial Support:

- Robert Welch Foundation
- U.S. National Science Foundation
- Sematech (support of J. Price)

The University of Texas at Austin Founded 1886 www.utexas.edu

Sematech's Albany, NY facility Founded 2008

www.sematech.org

Semiconductor industry switches to hafnium-based transistors

Plagued by quantum tunneling of charge carriers through gate insulators, chip manufacturers are shifting to high-dielectric-constant materials that maintain sufficient capacitance and reduce power leaks.

k represents the dielectric constant.

A decade of intensive materials research preceded the commercial introduction of Hf-based dielectrics **PROBLEM**:

As $d \rightarrow 1$ nm, $I_{\text{leakage}} \rightarrow 100 \text{ A/cm}^2$ because of quantum tunneling \downarrow **power loss & heating**, *esp.* in cell phones, laptops

SOLUTION:

Maintain high $C = k\epsilon_0 A/d$, for high device performance by replacing

 $k_{\rm SiO2} = 3.9$

with

 $18 < k_{\rm Hf-silicate} < 30$

Numerous obstacles were overcome before Hf-based oxides became a manufacturable solution for today's chip industry.

Further scalability depends on developing **non-invasive** methods for characterizing **intrinsic** & **process-induced** defects.

What are dielectric defects and how do they affect device performance

- Defects: anything that can trap an electron.
 - $-O_2$, N_2 , vacancies and / or interstitials
 - Impurities (C, B, etc.)
 - Crystal imperfections (grain boundaries, surface states)
 - All are discrete localized states within the band gap
- How does this affect device performance?
 - Charge trapping and V_{t} instability
 - Increase in leakage current
 - Degradation of carrier mobility

Atomic Layer Deposition (ALD) was critical to integrating high-*k* dielectric layers into commercial devices

Kirsch et al., J. Appl. Phys. 99, 023508 (2006)

* tetrakis(ethylmethylamino)hafnium

** aqueous ozone treatment in commercial wet bench

Benefits of ALD:

- Atomic level control of film composition
- Uniform thickness over large areas
- Very smooth surfaces

- High density, minimal defects
- Low deposition temperature.

We have employed two complementary optical methods for identifying defects in Si/SiO₂/Hf_{1-x}Si_xO₂ structures

Both methods are fast, non-invasive, defect-specific & compatible with in-line metrology; neither requires device fabrication

The need for non-invasive high-*k* defect metrology has driven an extension of SE methodology & application...

... from traditional role: characterizing thickness & broad-band $\epsilon(\omega)$ of ultra-thin films

...to new role: identifying <u>weak</u>, <u>discrete</u>, <u>sub-high-*k*-gap</u> absorption features relevant to electrical performance of high-*k* devices

Takeuchi *et al.*, JVST-A 22, 1337 (2004)
Li *et al.*, Appl. Phys. Lett. 89, 103523 (2006)
Sancho-Parramon *et al.*, TSF 516, 7990 (2008)

...but the extension has pitfalls:

- relies on traditional parametrized $\epsilon(\omega)$ models for Si substrate & bulk of SiO₂, HfO₂ layers
- absorption coefficient near discrete feature must be extracted using point-by-point data inversion methods
- artifacts from Si substrate CPs can appear if parametrized $\epsilon(\omega)$ models are incorrect

e.g. because of strain, electrostatic fields, etc.

We also observe Takeuchi's 4.75 eV absorption peak

+ "ghosts" of Si E₁, E₂ and E₁' critical points ...

+ additional peaks at 2.9, 3.6 and 3.9 eV

... but they all vanish when Si substrate replaced with SiO₂

 \Rightarrow the optically active defects cannot be in bulk HfO₂ Are they Si/SiO₂ defects? \Rightarrow remove the HfO₂ layer to find out

3 of 4 absorption peaks persist in absence of HfO₂

Peak height dependence on t_{SiO2} tracks N_{it} derived from electrical data

1st spectroscopic identification of sub-gap defects in Si/SiO₂

• 4.75 eV peak:

- noticeably absent, suggesting it's HfO₂-induced.
- also absent with $Hf_{1-x}Si_{x}O_{2}$ and $Al_{2}O_{3}$ overlayers, showing it's HfO_{2} -specific

Peak amplitudes (but not energies) are sensitive to the high-*k* dielectric overlayer

Ab initio calculations predict that **oxygen vacancies** possess sub-SiO₂-gap optical transitions at energies close to the observed peaks

Identification of sub-gap absorption peaks with O vacancies suggests a connection with " V_{flatband} roll-off" in high-*k* devices

 V_{fb} in Si/SiO₂/high-k devices is observed to "roll off" quickly for t_{SiO2} < 3 nm

[*V*_{fb} also varies in well-documented ways with **anneal treatment**, **electrode work function**, **high-k material**, etc.]

- $V_{\rm fb}$ variability leads to irreproducibility in device performance.
- A widely-accepted model* attributes V_{fb} variations to creation of oxygen vacancies in the SiO₂ interfacial layer due to oxygen gettering by the high-k overlayer.

• O vacancies created in the thinnest SiO₂ layers, where strained SiO_x dominates, are preferentially **positively charged**.

*G. Bersuker *et al.*, J. Appl. Phys. **100**, 094108 (2006); **ibid.**, Proc. 38th Eur. Sol. St. Dev. Res. Conf., p. 134 (2008).

2.9 eV peak closely tracks $V_{\rm fb}$ dependence on $t_{\rm SiO2}$

3.6, 3.9, and 4.75 eV peaks are less sensitive to t_{SiO2}

Results suggest 2.9 eV peak originates from positively-charged O-vacancies at the Si/SiO₂ interface that are responsible for V_{fb} roll-off

Intentional deposition of O-deficient HfO₂ film* simultaneously strengthens O-gettering & sub-gap absorption

Sub-gap absorption gives immediate feedback on on influence of processing steps on electrical properties, and correlates with known dependencies of $V_{\rm fb}$ roll-off

** FGA helps passivate Si/SiO₂ interface defects

Choi et al., IRPS 2007

In-situ feedback from optical monitor can help find process sequences that improve device performance

 $D_2(b)$: high temp/pressure deuterium anneal $D_2(b)$ + ALD of 3 nm HfO₂ almost

D₂(b) + ALD of 3 nm HfO₂ almost completely suppresses 2.9 eV peak !

Unfortunately, the 2.9 eV recovers after a post-deposition anneal (PDA)

Internal multi-photon photoemission & time-dependent EFISH* are widely used to investigate charge trapping at oxide surfaces

previous TD-SHG studies of high-k dielectrics: Marka et al., Phys. Rev. B 67, 045302 (2003)

*Electrostatic-Field-Induced Second Harmonic (EFISH) generation:

- (1) Incident fs pulse 3-photon-excites electrons above SiO₂ CB barrier
- (2) Electrons drift to oxide surface
- (3) Electron trapping, catalyzed by ambient O_2 , creates electrostatic field

J. Bloch, et al., PRL 77 (1996)

For a narrow band of incident photon energies, we observe delayed EFISH <u>decay</u> in samples with as-grown HfO₂ films

Time-dependent FDISH* measurements show no variation in SHG phase during scan

 $I_{2\omega}(t) \propto \left\| \chi^{(2)} \right\| + \left| \chi^{(3)} \right| e^{i\Phi(t)} E_{DC}(t) \right\|^2 I_{\omega}^2$

This rules out the possibility that EFISH decay is destructive interference between $\chi^{(2)}$ and monotonically growing $\chi^{(3)}E_{\rm DC}(t)$ e^{i $\Phi(t)$}

Resonant EFISH decay depends quadratically on incident power ...

The photo-ionized defect ground state takes several hours to refill from the Si VB ...

EFISH decay is <u>not</u> observed for Si/SiO₂/Hf_{1-x}Si_xO₂ nor annealed Si/SiO₂/HfO₂ film stacks

Optical methods enable detection of defects prior to processing (e.g. annealing, device fabrication)

Ab-initio calculations identify an oxygen vacancy defect in m-HfO₂ with an optical transition energy of ~ 3.27 eV

TABLE I. The optical transition energies (in eV) with the largest oscillator strength for oxygen vacancies in m-HfO₂ involving defect gap states. The nature of each type of transition is explained in Fig. 5.

Charge	Type III	Type IV	Type V	Type VI
V ²⁺	4.94			
V^+	4.67	3.27	2.67	
V^0		3.41	2.45	
<i>V</i> ⁻		3.20	2.35	0.78
V^{2-}		3.25		0.92

MUÑOZ RAMO et al. PHYSICAL REVIEW B 75, 205336 (2007)

- V°, V⁺ most stable defects (and highest oscillator strength)
- m-HfO₂ exists as small polymorphs in as-grown HfO₂, but absent in HfSiO

Summary of defects identified optically in Si/SiO₂/HfO₂ for the first time

Defect Energy [eV]	Location	Nature	Method
2.9	Si/SiO ₂ interface	Oxygen vacancy; responsible for $V_{\rm fb}$ roll-off	SE
3.2	HfO ₂ bulk	Oxygen vacancy; HfO ₂ -specific; removed by annealing	SHG
3.6	SiO ₂	Intrinsic to Si/SiO ₂	SE
3.9	SiO ₂	Intrinsic to Si/SiO ₂	SE
4.75	SiO ₂	Oxygen vacancy; HfO ₂ -induced HfO ₂ -specific	SE

Current work: with high-k, who needs silicon?

Since IBM introduced it in 1998,* SOI has entered the mainstream of high-performance <u>electronics</u> & <u>photonics</u> ...

*www-03.ibm.com/press/us/en/pressrelease/2521.wss

SOI MOSFETS

Celler, Cristoloveanu, "Frontiers of SOI," J. Appl. Phys. 93, 4955 (2003)

SOI waveguides & MEMS

Reed, Knights, *Silicon photonics: an introduction* (Wiley 2004)

Wii

... everyday life

... and high-end computing

SOI provides advantages over conventional ICs at 2 levels...

Celler, Cristoloveanu, "Frontiers of SOI," J. Appl. Phys. 93, 4955 (2003)

IC level: superior transistor isolation

conventional ICs: p-n junction isolation* \Rightarrow parasitic capacitance, limited transistor density

* J. S. Kilby, "Invention of the Integrated Circuit," Nobel Prize lecture (2000).

SOI: dielectric isolation

Each transistor is isolated from the Si substrate and from every other transistor by the BOX below, and by oxides above & on the sides

Device level: alleviate "short channel" effects

conventional ICs: \vec{E}_{gate} competes with $\vec{E}_{source-drain} \Rightarrow V_{threshold}$ roll-off, reduced reliability Source-Drain leakage grows \Rightarrow high power consumption

SOI: thin fully-depleted (FD) Si channel on insulator alleviates both problems

Preparing an ultrathin single-crystal Si film on an amorphous insulator is a challenging problem:

Several competing technologies & companies have emerged to solve it

SIMOX: Separation by IMplantation of OXygen oxygen-implant-layer

Smart Cut^(R) from Soitec Wafer Bonding: Layer Transfer from SiGen ELTRAN from Canon (Yamagata et al., Mat. Res. Soc. Symp. Proc. 681E (2001))

siliconwafer

SOI layer silicon dioxide layer

silicon-substrate

annea

O ions

Seed Methods: Si layer grown directly on chemically-treated or crystalline insulator

Our samples were prepared by Plasma-Activated Wafer Bonding

During thermal oxidation thinning, defects created at the external surface migrate to the SOI/BOX interface ...

O. Naumova et al, Mater. Sci. Eng., B 135, 238 (2006)

... where they become performance-limiting charge traps

We reveal some SOI/BOX interface defects (destructively) by HF dipping (the standard diagnostic)

O. Naumova et al, Mater. Sci. Eng., B 135, 238 (2006)

Quantitative analysis of TD-EFISH reveals defect density at SOI/BOX interface increases <u>linearly</u> as t_{SOI} thins

Power-dependence shows SOI/BOX interface defect levels are excited by a two-photon process ...

... and thus lie \geq 1 eV below SiO₂ CB edge

But spectral dependence is weak for $1.5 \le hv_{laser} \le 1.7 \text{ eV}$; no sharp resonant features observed.

SUMMARY

Accelerating the next technology revolution.

Epi-optics provides one answer to the clarion call of ITRS 2009:

"Faster, non-destructive ways of detecting these defects are needed."

END